I) The case for stochastic orbital migration 2) Open Exoplanet Catalogue

Hanno Rein @ UoT St. George Campus, March 2013

Extra-solar planet census

All discovered extra-solar planets

869 confirmed extrasolar planets

- Super-Jupiters
- (Hot) Jupiters
- Neptunes
- Super-Earths
- Earth-like planets

Open Exoplanet Catalogue (Rein 2012b)

All multi-planetary systems

327 confirmed planets in multi-planetary systems

- Multiple Jupiters
- Densely packed systems of Neptunes and (Super)-Earths
- I Solar System
- Some systems are deep in resonance

Open Exoplanet Catalogue (Rein 2012b)

Radial velocity planets

Cumulative period ratio in multiplanetary systems

- Periods of systems with massive planets tend to pile up near integer ratios
- Most prominent features at 4:I, 3:I, 2:I, 3:2

Kepler candidates

2740 planet candidates

- Probing a different regime
- Small mass planets
- A lot of planets

Kepler candidates with multiple planets

Kepler multi-planetary systems

- Small mass planets
- Hierarchical systems
- Densely packed
- Not many are in resonance

Kepler's transiting planet candidates

- Period ratio distribution much smoother for small mass planets
- Deficiencies near $4: 3$, 3:2, 2: 1
- Excess slightly outside of the exact commensurability

Rein, Payne, Veras \& Ford (2012)

Stochastic orbital migration

Migration - Type I

- Low mass planets
- No gap opening in disc
- Migration rate is fast
- Depends strongly on thermodynamics of the disc

Migration - Type II

- Massive planets (typically bigger than Saturn)
- Opens a (clear) gap
- Migration rate is slow
- Follows viscous evolution of the disc

2D hydro code Prometheus (Rein 2010)

How does a real protoplanetary disk look like?

Image credit: NASA/JPL-Caltech

Why think about stochastic migration?

- Angular momentum transport
- Magnetorotational instability (MRI)
- Density perturbations interact gravitationally with planets
- Stochastic forces lead to random walk
- Large uncertainties in strength of forces

Animation from Nelson \& Papaloizou 2004 Random forces measured by Laughlin et al. 2004, Nelson 2005, Oischi et al. 2007

Random walk in all orbital parameters

semi-major axis

time

Analytic growth rates for I planet

$$
\begin{aligned}
& (\Delta a)^{2}=4 \frac{D t}{n^{2}} \\
& (\Delta \varpi)^{2}=\frac{2.5}{e^{2}} \frac{\gamma D t}{n^{2} a^{2}} \\
& (\Delta e)^{2}=2.5 \frac{\gamma D t}{n^{2} a^{2}}
\end{aligned}
$$

Rein \& Papaloizou 2009, Adams et al 2009, Rein 2010

Analytic growth rates for 2 planets

$$
\begin{aligned}
\frac{\left(\Delta \phi_{1}\right)^{2}}{(p+1)^{2}} & =\frac{9 \gamma_{f}}{a_{1}^{2} \omega_{l f}^{2}} D t \\
(\Delta(\Delta \varpi))^{2} & =\frac{5 \gamma_{s}}{4 a_{1}^{2} n_{1}^{2} e_{1}^{2}} D t
\end{aligned}
$$

Rein \& Papaloizou 2009

Multi-planetary systems in mean motion resonance

- Stability of multi-planetary systems depends strongly on diffusion coefficient
- Most planetary systems are stable for entire disc lifetime

The formation of Kepler-36

Kepler-36 c as seen from Kepler-36 b

- Would appear 2.5 times the size of the Moon

- Very close orbits, near a 7:6 resonance
- Very different densities

Formation of Kepler-36

- Migration rate and mass ratio determine the final resonance
- Higher order resonances require faster migration rates
- Higher mass planets end up in lower order resonances
- Once in resonance, planets often stay there for the rest of the disc lifetime

Problem with Kepler-36

< 1000 years

Need extremely fast migration rate to capture into a high order resonance.

Unrealistically fast.

Planets are not large enough to migrate in Type III regime.

Solution: Stochastic migration

Pardekooper, Rein \& Kley (in prep)

A statistical analysis

Kepler's transiting planet candidates

- Period ratio distribution much smoother for small mass planets
- Deficiencies near $4: 3$, 3:2, 2: 1
- Excess slightly outside of the exact commensurability

Rein, Payne, Veras \& Ford (2012)

Testing stochastic migration: Method

Architecture and masses from observed KOIs

Placing planets in a MMSN, further out, further apart, randomizing all angles

N -body simulation with migration forces

Testing stochastic migration: Advantages

Comparison of statistical quantities

- Period ratio distribution
- Eccentricity distribution
- TTVs

Comparison of individual systems

- Especially interesting for multi-planetary systems
- Can create multiple realizations of each system

No synthesis of a planet population required

- Observed masses, architectures
- Model independent

Preliminary results

Rein 2012

Future expansions

Physical disk model

- ID hydrodynamic simulation
- Coupled to N-body simulations

Other physical effects

- Tidal damping
- Evaporation

Completeness

- Include planets missed by Kepler

GPU based integrators

- Allows for much bigger samples
- Wider parameter space exploration

Saturn's Rings

REBOUND

- Code description paper published by A\&A, Rein \& Liu 2012
- Multi-purpose N -body code
- Only public N -body code that can be used for granular dynamics
- Written in C99, open source, GPL
- Freely available at http://github.com/hannorein/rebound

Symplectic Epicycle Integrator

$$
\begin{gathered}
H=\frac{1}{2} p^{2}+\Omega(p \times r) e_{z}+\frac{1}{2} \Omega^{2}\left[r^{2}-3\left(r \cdot e_{x}\right)^{2}\right]+\begin{array}{r}
\Phi(r) \\
\text { Epicycle }
\end{array} \quad \text { Kick }
\end{gathered}
$$

I/2 Kick
Epicycle
I/2 Kick

Rein \& Tremaine 201I

Mixed variable symplectic (MVS) integrator

Rein \& Tremaine 201I

Symplectic Epicycle Integrator: Rotation

- Solving for the orbital motion involves a rotation.
- Formally $\operatorname{det}(D)=1$, but due to floating point precision $\operatorname{det}(D) \sim 1$ only.
- Trick: Use three shear operators instead of one rotation.
$\left(\begin{array}{cc}\cos \phi & \sin \phi \\ -\sin \phi & \cos \phi\end{array}\right)=\left(\begin{array}{l}\text { ta } \\ -\operatorname{tat} \\ \text { - } \operatorname{det}(D)=1 \text { exactly for }\end{array} .=\right.$, each shear operator, even in floating point precision.
- No long term trend linear trend anymore!

Saturn is a smaller version of the Solar System

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006, NASA/JPL-Caltech/Space Science Institute

Stochastic Migration

REBOUND code, Rein \& Papaloizou 2010, Crida et al 20I0, Pan, Rein, Chiang \& Evans 2012

Motion is consistent with a random walk

Pan, Rein, Chiang, Evans 2012

Observations

- Observational evidence for small scale structures
 - Typical size ~100m

Rein \& Latter (2013), Thomson 2010

Close-up view of the viscous over-stability

Numerical simulations with REBOUND

Symplectic Epicycle Integrator

- Fast
- High accuracy
- No long term drifts (important)

Plane-sweep algorithm
 - Fast
 - $O(N)$ for elongated boxes

Direct particle simulations of Saturn's Rings
 - Longest integration time ever done
 - Widest boxes ever done

Non-linear evolution

$$
\text { time }=0.000 \text { [orbits] }
$$

Long-term evolution

Rein \& Latter (20|3)

Open Exoplanet Catalogue

Why do we need another exoplanet catalogue?

Common drawbacks of astronomical catalogues

Centralized

- Impossible to correct typos, add data without sending an e-mail to the person in charge
- Closed ecosystem

Web-based

- Website are badly written
- Requires flash or java plugin
- Need a constant internet connection
- Restricted to a very limited, predefined set of possible queries

Slow and outdated

- It can take days/weeks/months for new planets to be added
- Maintainer can be holiday or abandon the project

Old-fashioned formats

- Static tables are not adequate to represent diverse dataset
- Almost impossible to include binaryl triple/quadruple systems
- Not flexible when adding new data
- Unintuitive to parse

Open Exoplanet Catalogue

Open source philosophy

- Unrestrictive MIT license
- Community project
- Everyone can contribute and modify data
- Everyone can expand it
- Distributed, no need for a server/website
- Private clones with confidential data

Based on git

- Distributed version control system
- Used by Linux kernel and most other open source projects
- Every single value, every change ever made is logged, verifiable

Ready to go

- 674 systems, 51 binary system, 870 exoplanets, 9 solar system objects, 2740 KOI objects
- ~10 million users

Hierarchical data structure

- Uses plain XML
- Can represent arbitrary configurations in systems with stellar multiplicity >1
- Extremely easy and intuitive to parse in almost any language
- Compresses extremely well
- size $\sim 100 \mathrm{~KB}$

Example of a system file: 42 Dra b

```
<system>
    <name>42 Dra</name>
    <rightascension>18 25 59</rightascension>
    <declination>+65 33 49</declination>
    <distance>97.3</distance>
    <star>
        <mass>0.98</mass>
        <radius>22.03</radius>
        <magV>4.83</magV>
        <metallicity>-0.46</metallicity>
        <spectraltype>K1.5III</spectraltype>
        <planet>
            <name>42 Dra b</name>
            <list>Confirmed planets</list>
            <mass>3.88</mass>
            <period>479.1</period>
            <semimajoraxis>1.19</semimajoraxis>
            <eccentricity>0.38</eccentricity>
            <description>42 Draconis is a metal poor star.</description>
            <discoverymethod>RV</discoverymethod>
            <lastupdate>09/03/23</lastupdate>
            <discoveryyear>2009</discoveryyear>
            <new>0</new>
        </planet>
        <name>42 Dra</name>
    </star>
</system>
```


Example of a python script parsing all systems

```
import xml.etree.ElementTree as ET, glob
for filename in glob.glob("*.xml"):
    tree = ET.parse(open(filename, 'r'))
    planets = tree.findall(".//planet")
    for planet in planets:
    print planet.findtext("./name")
    print planet.findtext("./mass")
```


Open Exoplanet Catalogue

OpenExoplanetCatalogue.com

 arXiv:I2|I.7|2|
Summary

The case for stochastic orbital migration

- Stochastic migration is directly observable in Saturn's rings.
- Protoplanetary disks are turbulent due to the MRI.
- Stochastic migration plays an important role for small mass planets.
- Resonances can easily get destroyed.
- Tendency to form high order resonance.
- Very soon, we will understand how most planets in the Kepler sample formed.

Open Exoplanet Catalogue

Use it!
Contribute to it!

